Answer on Question 66724, Physics, Atomic and Nuclear Physics

Question:

A water balloon was dropped from a high window and struck its target 1.17 seconds later. If the balloon left the person's hand at $-4.5 \mathrm{~m} / \mathrm{s}$, what was its velocity on impact?

Solution:

We can find the velocity of the water balloon on impact from the kinematic equation:

$$
v=v_{i}+g t,
$$

here, $v_{i}=-4.5 \mathrm{~m} / \mathrm{s}$ is the initial velocity of the water balloon, v is the velocity of the water balloon on impact, $g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ is the acceleration due to gravity and t is the time.

Then, we get:

$$
v=v_{i}+g t=-4.5 \frac{\mathrm{~m}}{\mathrm{~s}}+\left(-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \cdot 1.17 \mathrm{~s}=-15.96 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

The sign minus indicates that the velocity of the balloon is directed downward.
Answer:
$v=-15.96 \frac{\mathrm{~m}}{\mathrm{~s}}$.

