A crate having a mass of 750 kg is lifted from rest with a uniform acceleration by a crane such that after 10 seconds it has a velocity of $14 \mathrm{~m} / \mathrm{s}$. Calculate the tension in the lifting cable. Please show and include all calculations and assumptions.

First of all we need to find acceleration of the crate:

$$
a=\frac{v}{t}
$$

Use second Newton's law:

$$
\begin{gathered}
T-F_{g}=M a \\
T=F_{g}+M a=M g+M a=M\left(g+\frac{v}{t}\right) \\
T=750 \mathrm{~kg} *\left(9.8 \mathrm{~m} / \mathrm{s}^{2}+\frac{14 \mathrm{~m} / \mathrm{s}}{10 \mathrm{~s}}\right)=8400 \mathrm{~N}
\end{gathered}
$$

Answer: $T=8400 \mathrm{~N}$

