Answer on Question 66703, Physics, Other

Question:

What is the percentage change in the length of 1.0 m iron rod if its temperature changed by $100^{\circ} \mathrm{C}$. The coefficient of the linear thermal expansion for the iron is $\alpha=2$. $10^{-5}{ }^{\circ} \mathrm{C}^{-1}$.

Solution:

By the definition of the linear thermal expansion we have:

$$
\frac{\Delta L}{L_{0}}=\alpha \Delta T,
$$

where ΔL is the change in the length of the iron rod after the change in temperature, L_{0} is the length of the iron rod before the change in temperature, α is the coefficient of linear thermal expansion for the iron and ΔT is the change in temperature.

Then, from this formula, we can calculate ΔL :

$$
\Delta L=\alpha L_{0} \Delta T=2 \cdot 10^{-5}{ }^{\circ} \mathrm{C}^{-1} \cdot 1.0 \mathrm{~m} \cdot 100^{\circ} \mathrm{C}=0.002 \mathrm{~m}
$$

The length of the iron rod after its temperature changed by $100^{\circ} \mathrm{C}$ will be:

$$
L=L_{0}+\Delta L=1.0 m+0.002 m=1.002 m
$$

Finally, we can find the percentage change in the length of the iron rod:

$$
\% \text { change }=\frac{1.002 m-1.0 m}{1.0 m} \cdot 100 \%=0.2 \%
$$

Answer:

$\%$ change $=0.2 \%$.
Answer provided by https://www.AssignmentExpert.com

