Answer on Question 66683, Physics, Mechanics, Relativity

Question:

A 2 m long string vibrates in 4 loops at 50 Hz . The linear density of the string is $0.0004 \mathrm{~g} / \mathrm{cm}$. Calculate the tension in the string.

Solution:

We know from the conditions of the task that the string vibrates in 4 loops. One complete wave in a standing wave pattern consists of two loops. Therefore, the length of the string is equal to two wavelengths of the wave:

$$
L=\frac{1}{2} n \lambda=\frac{4}{2} \lambda=2 \lambda,
$$

here, L is the length of the string, n is the number of the loops, λ is the wavelength.
From this formula we can find the wavelength of the wave travelling in the string:

$$
\lambda=\frac{L}{2}=\frac{2 \mathrm{~m}}{2}=1 \mathrm{~m} .
$$

Then, we can find the velocity of the wave from the wave speed formula:

$$
v=f \lambda,
$$

here, v is the velocity of the wave, f is the frequency and λ is the wavelength.
Let's substitute the numbers:

$$
v=f \lambda=50 \mathrm{~Hz} \cdot 1 \mathrm{~m}=50 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Finally, we can find the tension in the string from the formula:

$$
v=\sqrt{\frac{T}{\mu}},
$$

here, v is the velocity of the wave in the string, T is the tension in the string, μ is the linear density of the string.

Then, we get:

$$
\begin{gathered}
v^{2}=\frac{T}{\mu^{\prime}} \\
T=\mu v^{2}=0.00004 \frac{\mathrm{~kg}}{\mathrm{~m}} \cdot\left(50 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}=0.1 \mathrm{~N} .
\end{gathered}
$$

Answer:
$T=0.1 N$.
Answer provided by https://www.AssignmentExpert.com

