Answer on Question \#66513, Physics / Electromagnetism

A typical magnetic field strength for the Milky Way Galaxy is $5.0 \times 10-10 \mathrm{~T}$. If a cosmic ray electron is moving with a speed of $3.0 \times 106 \mathrm{~m} / \mathrm{s}$, what is the radius of its spiral path (i.e., the cyclotron radius)? How long does it take such an electron to make one full circle?

Solution:

We use the following equation

$$
r=\frac{m v}{q B}
$$

Where, r is radius, m is the mass of a charged particle ($9.1 \times 10^{-31} \mathrm{~kg}$), v is the velocity perpendicular to the line of the magnetic field, q is particle charge $\left(1.6 \times 10^{-19} \mathrm{C}\right), \mathrm{B}$ is magnetic induction.

$$
r=\frac{9.1 \cdot 10^{-31} \mathrm{~kg} \times 3.0 \cdot 10^{6} \mathrm{~m} / \mathrm{s}}{1.6 \cdot 10^{-19} \mathrm{C} \times 5.0 \cdot 10^{-10} \mathrm{~T}}=3.4 \cdot 10^{4} \mathrm{~m}
$$

Time of one complete rotation

$$
\begin{gathered}
\tau=2 \pi \frac{\mathrm{~m}}{q B} \\
\tau=2 \pi \times \frac{9.1 \cdot 10^{-31} \mathrm{~kg}}{1.6 \cdot 10^{-19} \mathrm{C} \times 5.0 \cdot 10^{-10} \mathrm{~T}}=7.14 \cdot 10^{-2} \mathrm{~s}
\end{gathered}
$$

Answer: $3.4 \cdot 10^{4} m$ and $7.14 \cdot 10^{-2} s$
Answer provided by https://www.AssignmentExpert.com

