

Answer on Question 66512, Physics, Electromagnetism

Question:

You had so much fun making a capacitor that you decide to make an electric motor. You have copper wire (resistivity, $\rho = 1.70 \cdot 10^{-8} \Omega \cdot m$) with a cross-sectional area of $2.00 \cdot 10^{-7} m^2$, and using $1.00 m$ of this wire you make a rectangular coil with sides having lengths of 1.50 cm and 1.00 cm . Your ceramic magnet has a magnetic field of $0.30 T$ in which you will immerse this coil. You will power it with a standard D-cell battery, so the potential difference is $1.50 V$. Determine the maximum torque on your electric motor. (There are a lot of little steps in this problem, including geometry and equations from prior chapters.)

Solution:

Let's first find the resistance of the wire:

$$R = \rho \frac{l}{A},$$

here, R is the resistance of the wire, ρ is the resistivity of the wire, l is the length of the wire and A is the cross-sectional area of the wire.

Then, we can calculate the resistance of the wire:

$$R = \rho \frac{l}{A} = 1.70 \cdot 10^{-8} \Omega \cdot m \cdot \frac{1.00 m}{2.00 \cdot 10^{-7} m^2} = 0.085 \Omega.$$

We can find the current through the wire from the Ohm's law:

$$I = \frac{V}{R},$$

here, I is the current through the wire, V is the potential difference across the wire and R is the resistance of the wire.

So, we get:

$$I = \frac{V}{R} = \frac{1.50 V}{0.085 \Omega} = 17.65 A.$$

We can find the torque on the rectangular coil from the formula:

$$\tau = NIabB\sin\theta,$$

here, N is the number of the loops of the wire (using 1.00 m of the copper wire we can make the rectangular coil of 20 loops; each loop has the sides length of 1.50 cm and 1.00 cm , respectively), I is the current through the wire, a, b is the sides of the rectangular coil, B is the magnetic field, θ is the angle between the magnetic field and the normal to the plane of the coil.

The maximum torque on the rectangular coil when $\theta = 90^\circ$, so that the coil is in the plane of the magnetic field:

$$\begin{aligned}\tau_{max} &= NIabB\sin 90^\circ = NIabB = 20 \cdot 17.65\text{ A} \cdot 0.015\text{ m} \cdot 0.01\text{ m} \cdot 0.3\text{ T} = \\ &= 0.016\text{ N} \cdot \text{m}.\end{aligned}$$

Answer:

$$\tau_{max} = 0.016\text{ N} \cdot \text{m}.$$

Answer provided by <https://www.AssignmentExpert.com>