Answer on Question 66512, Physics, Electromagnetism

Question:

You had so much fun making a capacitor that you decide to make an electric motor. You have copper wire (resistivity, $\rho=1.70 \cdot 10^{-8} \Omega \cdot m$) with a cross-sectional area of $2.00 \cdot 10^{-7} \mathrm{~m}^{2}$, and using 1.00 m of this wire you make a rectangular coil with sides having lengths of 1.50 cm and 1.00 cm . Your ceramic magnet has a magnetic field of $0.30 T$ in which you will immerse this coil. You will power it with a standard D-cell battery, so the potential difference is 1.50 V . Determine the maximum torque on your electric motor. (There are a lot of little steps in this problem, including geometry and equations from prior chapters.)

Solution:

Let's first find the resistance of the wire:

$$
R=\rho \frac{l}{A}
$$

here, R is the resistance of the wire, ρ is the resistivity of the wire, l is the length of the wire and A is the cross-sectional area of the wire.

Then, we can calculate the resistance of the wire:

$$
R=\rho \frac{l}{A}=1.70 \cdot 10^{-8} \Omega \cdot m \cdot \frac{1.00 \mathrm{~m}}{2.00 \cdot 10^{-7} \mathrm{~m}^{2}}=0.085 \Omega .
$$

We can find the current through the wire from the Ohm's law:

$$
I=\frac{V}{R}
$$

here, I is the current through the wire, V is the potential difference across the wire and R is the resistance of the wire.

So, we get:

$$
I=\frac{V}{R}=\frac{1.50 \mathrm{~V}}{0.085 \Omega}=17.65 \mathrm{~A} .
$$

We can find the torque on the rectangular coil from the formula:

$$
\tau=N I a b B \sin \theta,
$$

here, N is the number of the loops of the wire (using 1.00 m of the copper wire we can make the rectangular coil of 20 loops; each loop has the sides length of 1.50 cm and 1.00 cm , respectively), I is the current through the wire, a, b is the sides of the rectangular coil, B is the magnetic field, θ is the angle between the magnetic field and the normal to the plane of the coil.

The maximum torque on the rectangular coil when $\theta=90^{\circ}$, so that the coil is in the plane of the magnetic field:

$$
\begin{aligned}
& \tau_{\max }=N I a b B \sin 90^{\circ}=N I a b B=20 \cdot 17.65 \mathrm{~A} \cdot 0.015 \mathrm{~m} \cdot 0.01 \mathrm{~m} \cdot 0.3 \mathrm{~T}= \\
&=0.016 \mathrm{~N} \cdot \mathrm{~m} .
\end{aligned}
$$

Answer:

$\tau_{\max }=0.016 \mathrm{~N} \cdot \mathrm{~m}$.
Answer provided by https://www.AssignmentExpert.com

