Answer on Question 66509, Physics, Electric Circuits

Question:

Arthur Jeffries finds that a proton moving with a velocity of $1.45 \cdot 10^{6} \mathrm{~m} / \mathrm{s}$ in a particular uniform magnetic field experiences a force of $5.11 \cdot 10^{-17} \mathrm{~N}$. If the direction of the velocity vector is at a right angle to the direction of the magnetic field, calculate the magnitude of the magnetic field and express your answer in units of gauss (recall that $10^{4} G=1 T$).

Solution:

Let's write the magnetic force that acts on the proton travelling with a velocity v in a magnetic field B :

$$
\begin{aligned}
\boldsymbol{F} & =q(\boldsymbol{v} \times \boldsymbol{B}), \\
F & =q v B \sin \theta,
\end{aligned}
$$

here, $q=1.6 \cdot 10^{-19} C$ is the charge of the proton, v is the velocity of the proton, B is the magnitude of the magnetic field, θ is the angle between the velocity and the magnetic field (since the proton moves perpendicularly to the magnetic field, it means that $\theta=90^{\circ}$).

Then, from the previous formula, we can find the magnitude of the magnetic field:

$$
B=\frac{F}{q v \sin \theta}=\frac{5.11 \cdot 10^{-17} \mathrm{~N}}{1.6 \cdot 10^{-19} \mathrm{C} \cdot 1.45 \cdot 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}} \cdot \sin 90^{\circ}}=2.2 \cdot 10^{-4} \mathrm{~T}=2.2 \mathrm{G}
$$

Answer:

$B=2.2 G$.

Answer provided by https://www.AssignmentExpert.com

