Answer on Question #66462, Physics / Optics

The sodium lamp used in a physics laboratory gives out light uniformly. Suppose that the lamp uses 40 W. Calculate the magnitude of electric field.

```
Find: E - ?
```

Given:

P=40 W c=3×10⁸ m/s ϵ_0 =8.85×10⁻¹² F/m

```
ε=1
```

Solution:

Power of electromagnetic radiation:

P = wc (1),

where w is energy density, c is speed of light in vacuum.

Energy density:

 $w = \varepsilon_0 \varepsilon E^2$ (2),

where ϵ_0 is electric constant, ϵ is dielectric constant of the medium, E is magnitude of electric field.

$$P = \varepsilon_0 \varepsilon E^2 c (3)$$

Of (3) $\Rightarrow E = \sqrt{\frac{P}{\varepsilon_0 \varepsilon c}} (4)$
Of (4) $\Rightarrow E=123 \text{ V/m}$

Answer:

123 V/m

Answer provided by AssignmentExpert.com