Answer on Question \#66379, Physics / Electromagnetism

A chain hang over a nail with 2 m over one side \& 6 m on another side. If the force of friction is equal to the wt. of 1.0 m of the chain, calculate the chain required for the chain to slide of the nail.

Solution:

Each part of the chain has the same displacement, speed and acceleration (magnitude).
Equation of motion:
Where, $x(t)$ is length of the chain on the heavier side, L is the total length of the chain
$\mathrm{d}^{2} \mathrm{x}(\mathrm{t}) / \mathrm{dt}^{2}=2 \mathrm{~g} / \mathrm{L} *[\mathrm{x}-(\mathrm{L}+1) / 2]$
$x(t)=(L+1) / 2+A \exp (V(2 g / L) t)$
Given $L=8 \mathrm{~m}$,
$\mathrm{x}(\mathrm{t}=0 \mathrm{sec})=6 \mathrm{~m}$
$\mathrm{x}(0)=9 / 2+\mathrm{A} \exp (\mathrm{v} 2.5 \mathrm{t})=6 \mathrm{~m}$
$A=3 / 2 \mathrm{~m}$
$\mathrm{x}(\mathrm{t})=4.5+1.5 \exp (1.581 \mathrm{t})$
Now to find time t
$x(t)=4.5+1.5 \exp (1.581 \mathrm{t})=8$
$t=0.536 \mathrm{sec}$
Answer: 0.536 sec
Answer provided by https://www.AssignmentExpert.com

