Answer on Question \#66375 - Mechanics - Relativity

A truck moving at a speed of $v=144 \frac{\mathrm{~km}}{\mathrm{hr}}=40 \frac{\mathrm{~m}}{\mathrm{~s}}$ passes a car moving at a speed of $u=72 \frac{\mathrm{~km}}{\mathrm{hr}}=$ $20 \mathrm{~m} / \mathrm{s}$. If the truck sounds its horn at a frequency of $f_{0}=500 \mathrm{~Hz}$, what is the frequency of sound heard by the person the car?

Solution

The change of frequency (the Doppler shift) is

$$
\Delta f=\frac{v-u}{c} f_{0} .
$$

Here $c=343 \frac{\mathrm{~m}}{\mathrm{~s}}$ is the speed of a sound in air.
So

$$
\Delta f=\frac{40-20}{343} 500 \approx 29 \mathrm{~Hz} .
$$

Finally, the frequency of sound heard by the person the car is

$$
f=\Delta f+f_{0}=29+500=529 \mathrm{~Hz}
$$

Answers: 529 Hz .
Answer provided by https://www.AssignmentExpert.com

