Answer on Question 66372, Physics, Electric Circuits

Question:

Two spherical conductors each of capacity C are charged to potential V and $-V$. Then they are connected by a metallic wire. What is the loss of energy?

Solution:

By the definition, the energy stored in the spherical conductor can be found as follows:

$$
E=\frac{1}{2} C V^{2},
$$

here, C is the capacity of the spherical conductor and V is the potential across the spherical conductor.

Let's first find the total energy of the system of two spherical conductors before they are connected by the wire:

$$
E=E_{1}+E_{2}=\frac{1}{2} C V^{2}+\frac{1}{2} C(-V)^{2}=C V^{2} .
$$

When two spherical conductors are connected by the wire the total charge on them becomes zero (because we know that the spheres have equal and opposite potentials):

$$
Q=Q_{1}+Q_{2}=C V+C(-V)=0 .
$$

Then, the potential and the total energy of the system also becomes zero. Therefore, the loss of energy is $E_{\text {loss }}=C V^{2}$.

Answer:

$E_{\text {loss }}=C V^{2}$.

