Answer on Question \#66359, Physics / Optics

Question:

A car is traveling at $40 \mathrm{mi} / \mathrm{h}$ when the driver slams on the brakes coming to rest over a distance of 68 meters. What is the acceleration of the car in $\mathrm{m} / \mathrm{s}^{2}$?

Solution:

Let v_{1} be the initial truck's speed, v_{2} - its final speed, S - distance, a - acceleration of the truck, and t - time spent for decreasing the speed.
For uniformly accelerated motion

$$
\begin{align*}
& v_{2}=v_{1}+a t \tag{1}\\
& S=v_{1} t+\frac{a t^{2}}{2} \tag{2}
\end{align*}
$$

From $1^{\text {st }}$ equation $t=\frac{v_{2}-v_{1}}{a}$
and then $S=v_{1} \frac{v_{2}-v_{1}}{a}+\frac{a\left(\frac{v_{2}-v_{1}}{a}\right)^{2}}{2}=v_{1} \frac{v_{2}-v_{1}}{a}+\frac{\left(v_{2}-v_{1}\right)^{2}}{2 a}=\frac{v_{2}^{2}-v_{1}^{2}}{2 a}$.
Finally $a=\frac{v_{2}^{2}-v_{1}^{2}}{2 S}$.
$v_{1}=40 \frac{\mathrm{mi}}{\mathrm{h}}=40 \cdot \frac{1609.34 \mathrm{~m}}{3600 \mathrm{~s}}=17.88 \frac{\mathrm{~m}}{\mathrm{~s}}, \quad v_{2}=0 \frac{\mathrm{~m}}{\mathrm{~s}}, \quad S=68 \mathrm{~m}$
$a=\frac{0^{2}-17.88^{2}}{2 \cdot 68}=-2.35 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

Answer:

$$
-2.35 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Answer provided by https://www.AssignmentExpert.com

