Answer Question \#66347, Physics / Mechanics | Relativity

An insect of mass 20 g crawls from the centre to the outside edge of a rotating disc of mass 200 g and radius 20 cm . The disc was initially rotating at $22.0 \mathrm{rad} / \mathrm{s}$. What is the change in the kinetic energy of the system?

Solution:

Using Law of conservation of angular momentum

$$
J_{1} \omega_{1}=J_{2} \omega_{2}
$$

We find is J_{1}

$$
\begin{gathered}
\mathrm{J}_{1}=\mathrm{Mr}^{2} / 2 \\
\mathrm{~J}_{1}=0.2 \times(0.2)^{2} / 2=0.2 \times 0.2 \times 0.2 / 2=4 \times 10^{-3} \mathrm{kgm}^{2}
\end{gathered}
$$

We find is J_{2}

$$
\begin{gathered}
\mathrm{J}_{2}=\mathrm{Mr}^{2} / 2+\mathrm{mr}^{2} \\
\mathrm{~J}_{2}=4 \times 10^{-3}+0.02 \times(0.2)^{2}=4.8 \times 10^{-3} \mathrm{kgm}^{2}
\end{gathered}
$$

Now, we find is ω_{2}

$$
\begin{gathered}
\omega_{2}=\left(\mathrm{J}_{1} / \mathrm{J}_{2}\right) \omega_{1} \\
\omega_{2}=\left(4 \times 10^{-3} / 4.8 \times 10^{-3}\right) \times 22=18.3 \mathrm{rad} / \mathrm{s}
\end{gathered}
$$

Change in K.E

$$
\begin{gathered}
\Delta \mathrm{K}=\mathrm{J}_{2} \omega_{2}{ }^{2} / 2-\mathrm{J}_{1} \omega 1^{2} / 2 \\
\Delta \mathrm{~K}=\left[\left(4.8 \times 110^{-3} \times 18.3 \times 18.3\right) / 2\right]--\left[\left(4 \times 10^{-3} \times 22 \times 22\right) / 2\right]=-164.3 \mathrm{~J}
\end{gathered}
$$

Answer: -164.3 J

