Answer on Question #66346, Physics / Mechanics | Relativity

Use the Frobenius method to obtain one solution of the following ODE: 4 yx'' + 2y' + y = 0Solution:

$$a_{k+1} = -a_k / (2k + 2r + 2)(2k + 2r + 1), k = 0, 1, 2... (1)$$

To find y_1 apply (14) with $r = r_1 = 1 / 2$ to get the recurrence relation

$$a_{k+1} = -a_k / (2k + 3)(2k + 2), k = 0, 1, 2...$$

Then

$$a_1 = -a_0/3 \cdot 2$$
, $a_2 = -a_1/5 \cdot 4$, $a_3 = -a_2/7 \cdot 6$
So $a_1 = -a_0/3!$, $a_2 = a_0/5!$, $a_3 = -a_0/7!$

Since a_0 is arbitrary, let $a_0 = 1$

$$a_{k}(r_{1}) = (-1)^{k} / (2k + 1)! , k = 0, 1, 2...$$
$$y_{1}(x) = x^{1/2} \sum_{k=0}^{\infty} ((-1)^{k} / (2k + 1)!) x^{k}$$

To find y_2 , just apply (1) with $r = r_2 = 0$ to get the recurrence relation

 $b_{k+1} = -b^k / (2k + 2)(2k + 1)$

Letting the arbitrary constant $b_0 = 1$, then

$$b_{k}(r_{2}) = (-1)^{k} / (2k)$$
$$y_{2}(x) = \sum_{k=0}^{\infty} \left((-1)^{k} / (2k) \right) x^{k}$$

Answer provided by Assignment Expert.com