Answer on Question \#66346, Physics / Mechanics | Relativity

Use the Frobenius method to obtain one solution of the following ODE: $4 \mathrm{yx}{ }^{\prime \prime}+2 \mathrm{y}^{\prime}+\mathrm{y}=0$

Solution:

$$
\begin{equation*}
a_{k+1}=-a_{k} /(2 k+2 r+2)(2 k+2 r+1), k=0,1,2 \ldots \tag{1}
\end{equation*}
$$

To find y_{1} apply (14) with $r=r_{1}=1 / 2$ to get the recurrence relation

$$
a_{k+1}=-a_{k} /(2 k+3)(2 k+2), k=0,1,2 \ldots
$$

Then

$$
\begin{gathered}
a_{1}=-a_{0} / 3 \cdot 2, a_{2}=-a_{1} / 5 \cdot 4, a_{3}=-a_{2} / 7 \cdot 6 \\
\text { So } a_{1}=-a_{0} / 3!, a_{2}=a_{0} / 5!, a_{3}=-a_{0} / 7!
\end{gathered}
$$

Since a_{0} is arbitrary, let $a_{0}=1$

$$
\begin{gathered}
a_{k}\left(r_{1}\right)=(-1)^{k} /(2 k+1)!, k=0,1,2 \ldots \\
y_{1}(x)=x^{1 / 2} \sum_{k=0}^{\infty}\left((-1)^{k} /(2 k+1)!\right) x^{k}
\end{gathered}
$$

To find y_{2}, just apply (1) with $r=r_{2}=0$ to get the recurrence relation

$$
b_{k+1}=-b^{k} /(2 k+2)(2 k+1)
$$

Letting the arbitrary constant $b_{0}=1$, then

$$
\begin{gathered}
\mathrm{b}_{\mathrm{k}}\left(\mathrm{r}_{2}\right)=(-1)^{\mathrm{k}} /(2 \mathrm{k}) \\
\mathrm{y}_{2}(\mathrm{x})=\sum_{\mathrm{k}=0}^{\infty}\left((-1)^{\mathrm{k}} /(2 \mathrm{k})\right) \mathrm{x}^{\mathrm{k}}
\end{gathered}
$$

