Answer on Question \#66259, Physics / Mechanics | Relativity

The linear density of a vibrating string is $1.3 \times 10^{\wedge}-4 \mathrm{~kg} \mathrm{~m} 1$. A transverse wave is propagating on the string and is described by the equation $y(x, t)=0.021 \sin (30 t-x)$ where x and y are in metres and t is in seconds. Calculate the tension in the string.

Find: T- ?

Given:

$\rho=1.3 \times 10^{-4} \mathrm{~kg}^{2} \mathrm{~m}^{-3}$
$y(x, t)=0.021 \sin (30 t-x)$

Solution:

Wave velocity:
$\mathrm{v}=\sqrt{\frac{\mathrm{T}}{\rho}}(1)$, where T is tension, ρ is density
Of (1) $\Rightarrow v^{2}=\frac{T}{\rho}(2)$
Of (2) $\Rightarrow \mathrm{T}=\mathrm{v}^{2} \times \rho(3)$
Wave velocity:
$v=f \times \lambda$ (4)
Linear frequency:
$f=\frac{\omega}{2 \pi}(5)$, where ω is cyclic frequency
Wavelength:
$\lambda=\frac{2 \pi}{\mathrm{k}}(6)$, where k is wave number
(5) and (6) in (4):
$\mathrm{v}=\frac{\omega}{2 \pi} \times \frac{2 \pi}{\mathrm{k}}=\frac{\omega}{\mathrm{k}}(7)$
Equation of plane wave:
$y(x, t)=A \sin (\omega t-x)(8)$
From the condition of the task:
$y(x, t)=0.021 \sin (30 t-x)(9)$
Of (8) and (9) $\Rightarrow \omega=30 \mathrm{~s}^{-1}, \mathrm{k}=1 \mathrm{~m}^{-1}$ (10)
(10) in (7): $v=30 \mathrm{mxs}{ }^{-1}(11)$
(11) in (3) $\mathrm{T}=0.117 \mathrm{~N}$

Answer:
0.117 N

