Answer on Question \#66258-Physics / Mechanics \| Relativity
Question
The oscillations of two points $x 1$ and $x 2$ at $x=0$ and $x=1 m$ respectively are modelled as follows: $y 1=(0.3 \sin 4$ pie $t)$ and $y 2=0.3 \sin (4$ pie $t+$ pie/8).calculate the wavelength and speed of the associated wave.

Solution

$$
\begin{aligned}
& y 1=0.3 \sin (4 \pi t) ; y 2=0.3 \sin \left(4 \pi t+\frac{\pi}{8}\right) \\
& \Delta \varphi=\frac{\pi}{8} ; \Delta x=1 \mathrm{~m} ; \\
& \lambda=\frac{2 \pi * \Delta x}{\Delta \varphi}=2 * \frac{1}{\frac{1}{8}}=16 \mathrm{~m}-\text { wavelength } \\
& \omega=4 \pi=2 \pi v ; v=2 \mathrm{~Hz} ;- \text { frequency } \\
& v=v \lambda=2 * 16=32 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Answer: wavelength: 16m, speed: $\mathbf{3 2} \mathbf{~ m} / \mathrm{s}$
Answer provided by https://www.AssignmentExpert.com

