The elastic limit of the steel forming a piece of wire is equal to 2.70 \times 108 Pa. What is the maximum speed at which transverse wave pulses can propagate along this wire without exceeding this stress? (The density of steel is 7.86 \times 103 Kg/m3)

Propagation speed in the wire:

$$c = \sqrt{\frac{T}{\delta}}$$

where T – wire tension, δ – linear density.

$$c = \sqrt{\frac{T}{m}} = \sqrt{\frac{T}{\rho V}} = \sqrt{\frac{T}{\rho Sl}} = \sqrt{\frac{T}{\rho S}} = \sqrt{\frac{P}{\rho}}$$

$$c_{max} = \sqrt{\frac{2.7 * 10^8 Pa}{7.86 * 10^3 kg/m^3}} = 185.34 m/s$$

Answer: $c_{max} = 185.34 m/s$