Answer on Question \#66214, Physics / Solid State Physics

Four kg of water is placed in an enclosed volume of 1 m 3 . Heat is added until the temperature is $150^{\circ} \mathrm{C}$. Find (a) the pressure, (b)the mass of vapor, and (c) the volume of the vapor.

Solution:

a) We use the table of Saturated water-Temperature. In the quality region the pressure is given as $p=476.16 \mathrm{kPa}$
b) To find the mass of the vapor we must determine the quality. We use the next equation:

$$
v=v_{f}+x\left(v_{g}-v_{f}\right)
$$

Then,

$$
\begin{gathered}
0.25 \mathrm{~m}^{3} / \mathrm{kg}=0.001091 \mathrm{~m}^{3} / \mathrm{kg}+x(0.39248-0.001091) \mathrm{m}^{3} / \mathrm{kg} \\
0.25=0.001091+0.391389 x \\
0.391389 x=0.25-0.001091 \\
0.391389 x=0.248909 \\
x=0.248909\left(\mathrm{~m}^{3} / \mathrm{kg}\right) / 0.391389\left(\mathrm{~m}^{3} / \mathrm{kg}\right) \\
x=0.63596
\end{gathered}
$$

Using the relationship of $x=\frac{m_{g}}{m}$, we find the vapor mass

$$
m_{g}=x m=0.63596 \times 4 \mathrm{~kg}=2.544 \mathrm{~kg}
$$

c) The volume of the vapor is found from

$$
V_{g}=v_{g} m_{g}=2.544 \mathrm{~kg} \times 0.39248 \mathrm{~m}^{3} / \mathrm{kg}=0.998 \mathrm{~m}^{3}
$$

Answer: 476.16 kPa ; $2.544 \mathrm{~kg} ; 0.998$ m $^{\mathbf{3}}$

Answer provided by https://www.AssignmentExpert.com

