Answer on Question \#66213, Physics / Solid State Physics
For a specific volume of $0.2 \mathrm{~m} 3 / \mathrm{kg}$, find the quality of steam if the absolute pressure is (a) 40 kPa and (b) 630 kPa . What is the temperature of each case?

Find: x - ? $\mathrm{T}-$?

Given:

$\mathrm{v}=0.2 \mathrm{~m}^{3} / \mathrm{kg}$
$\mathrm{p}_{1}=40 \mathrm{kPa}$
$\mathrm{p}_{2}=630 \mathrm{kPa}$

Solution:

(a) Using information from Table (Properties of Saturated H2O-Pressure Table), we calculate the quality as follows:
$\mathrm{v}=\mathrm{v}_{\mathrm{f}}+\mathrm{x}\left(\mathrm{v}_{\mathrm{g}}-\mathrm{v}_{\mathrm{f}}\right)(1)$,
Of $(1) \Rightarrow 0.2=0.001+x(3.993-0.001)(2)$
Of $(2) \Rightarrow x=0.04985$
The temperature is found in Table next to the pressure entry: $\mathrm{T}=75.9^{\circ} \mathrm{C}$.
(b) We must interpolate to find the correct values in Table. Using the values at 0.6 and 0.8 MPa we have:
$\mathrm{v}_{\mathrm{g}}=\left(\frac{0.03}{0.2}\right) \times(0.2404-0.3157)+0.3157=0.3044(3)$
$\mathrm{v}_{\mathrm{f}}=0.0011$ (4)
(3) and (4) in (1): $0.2=0.0011+x(0.3044-0.0011)(5)$

Of (5) $\Rightarrow x=0.6558$
The temperature is interpolated to be:
$\mathrm{T}=\left(\frac{0.03}{0.2}\right) \times(170.4-158.9)+158.9=160.6^{\circ} \mathrm{C}$
Answer:
(a) $x=0.04985, T=75.9^{\circ} \mathrm{C}$;
(b) $x=0.6558 ; T=160.6^{\circ} \mathrm{C}$

Answer provided by https://www.AssignmentExpert.com

