Answer on Question \#66195, Physics / Mechanics | Relativity
A bullet of mass 20 g , travelling at a speed of $350 \mathrm{~m} / \mathrm{s}$, strikes a steel plate at an angle of 30 degree with the plane of plate. it ricochets off at the same angle, at a speed of $320 \mathrm{~m} / \mathrm{s}$. What is the magnitude of the impulse that the steel plate gives to the projectile ?lf the collision with the plate takes place over a time delta $\mathrm{t}=10^{\wedge} 3 \mathrm{~s}$, what is the average force exerted by the plate on the bullet?

Find: $\Delta p-? \Delta F-$?
Given:
$\mathrm{m}=20 \times 10^{-3} \mathrm{~kg}$
$\theta=30^{\circ}$
$v=350 \mathrm{~m} / \mathrm{s}$
$u=320 \mathrm{~m} / \mathrm{s}$
$\Delta \mathrm{t}=10^{-3} \mathrm{~s}$

Solution:

Magnitude of the impulse $\Delta \mathrm{p}$:
$\Delta \mathrm{p}=\mathrm{p}_{1}+\mathrm{p}_{2}(1)$
Magnitude of the impulse p_{1} :
$\mathrm{p}_{1}=\mathrm{mv} \sin \theta(2)$
Magnitude of the impulse p_{2} :
$\mathrm{p}_{2}=\mathrm{mu} \sin \theta(3)$
(2) and (3) in (1):
$\Delta \mathrm{p}=\mathrm{m} \sin \theta(\mathrm{v}+\mathrm{u})(4)$
Of (4) $\Rightarrow \Delta \mathrm{p}=6.7 \mathrm{~kg} \times \mathrm{m} / \mathrm{s}$
Average force:
$\Delta \mathrm{F}=\frac{\Delta \mathrm{p}}{\Delta \mathrm{t}}(5)$
Of (5) $\Rightarrow \Delta \mathrm{F}=6700 \mathrm{~N}$
Answer:
$6.7 \mathrm{~kg} \times \mathrm{m} / \mathrm{s}$
6700 N
Answer provided by https://www.AssignmentExpert.com

