## Answer on Question \#66183-Physics Mechanics-Relativity

A solid body rotates about a stationary axis so that its angular velocity depends on the rotation angle $\phi$ as $\omega=\omega 0-\mathrm{a} \phi$, where $\omega 0$ and a are positive constants. At the moment $\mathrm{t}=0$ the angle $\phi=0$. the time dependence of rotation angle is:

## Solution

$$
\begin{gathered}
\omega=\omega_{0}-a \phi \\
\omega=\frac{d \phi}{d t}=\omega_{0}-a \phi \\
d t=\frac{d \phi}{\omega_{0}-a \phi} \\
\int d t=\int \frac{d \phi}{\omega_{0}-a \phi} \\
t+c=-\frac{1}{a} \ln \left(\omega_{0}-a \phi\right) \\
\ln \left(\omega_{0}-a \phi\right)=-a(t+c) \\
\omega_{0}-a \phi=C e^{-a t} \\
\phi=\frac{\omega_{0}}{a}-C e^{-a t} \\
\phi(0)=\frac{\omega_{0}}{a}-C=0 \rightarrow \frac{\omega_{0}}{a}=C
\end{gathered}
$$

Thus,

$$
\phi=\frac{\omega_{0}}{a}\left(1-e^{-a t}\right)
$$

Answer provided by https://www.AssignmentExpert.com

