Answer on Question \#66182, Physics / Mechanics | Relativity

Particles are released from rest at A and slide down the smooth surface of height h to a conveyor B. The correct angular velocity (0 of the conveyor pulley of radius r to prevent any sliding on the belt as the particles transfer to the conveyor is

Solution:

We write the equations of motion using polar coordinates

$$
\begin{gathered}
m g \cos \theta=m R \dot{\theta} \\
-N+m g \sin \theta=-m R \dot{\theta}^{2}
\end{gathered}
$$

Integrate the first equation

$$
\begin{gathered}
\int_{0}^{\dot{\theta}} \dot{\theta} d \dot{\theta}=\frac{g}{R} \int_{0}^{\theta} \cos \theta d \theta \\
\frac{\dot{\theta}^{2}}{2}=\frac{g}{R} \sin \theta \\
\dot{\theta}=\sqrt{\frac{2 g}{R} \sin \theta}
\end{gathered}
$$

The conveyor pulley must turn at the rate

$$
R \dot{\theta}=r \omega
$$

For $\theta=\pi / 2$, so that

$$
\omega=\sqrt{\frac{2 g R}{r}}
$$

Answer: $\omega=\sqrt{\frac{2 g R}{r}}$
Answer provided by https://www.AssignmentExpert.com

