A square prism of wood $50 * 50 \mathrm{~mm}$ in cross section and 300 mm long is subjected to a tensile stress of 4 $\mathrm{t} / \mathrm{cm} 2$ along it's longitudinal axis and lateral compressive to a tensile stress of $2 \mathrm{t} / \mathrm{cm} 2$ along one pair of sides and a lateral tensile stress of $1-0 \mathrm{t} / \mathrm{cm} 2$ acting along the other pair of sides. If the value of E of the material is $1.5^{*} 10$ to the power $5 \mathrm{~kg} / \mathrm{cm} 2$,calculate it's changed dimensions.poisson's ratio for wood=. 4

Let

$$
\left.\begin{array}{c}
\left\{\begin{array}{c}
l_{x}=l_{y}=50 \mathrm{~mm}, l_{z}=300 \mathrm{~mm} \\
\sigma_{x}=2000 \frac{\mathrm{~kg}}{\mathrm{~cm}^{2}}, \sigma_{y}=1000 \frac{\mathrm{~kg}}{\mathrm{~cm}^{2}}, \sigma_{z}=4000 \frac{\mathrm{~kg}}{\mathrm{~cm}^{2}} \\
E=1.5 \cdot 10^{5} \frac{\mathrm{~kg}}{\mathrm{~cm}^{2}}
\end{array}\right. \\
\sigma=E \frac{\Delta l}{l} \rightarrow \Delta l=\frac{\sigma l}{E}
\end{array}\left\{\begin{array}{c}
\rightarrow \Delta l_{x}=\frac{\sigma_{x} l}{E}=2000 \cdot \frac{0.5}{1.5 \cdot 10^{5}}=666 \cdot 10^{-5} \mathrm{~cm} \\
\rightarrow \Delta l_{y}=\frac{\sigma_{y} l}{E}=1000 \cdot \frac{0.5}{1.5 \cdot 10^{5}}=333 \cdot 10^{-5} \mathrm{~cm}
\end{array}\right\} \begin{array}{r}
\Delta l_{z}=\frac{\sigma_{z} l}{E}=4000 \cdot \frac{30}{1.5 \cdot 10^{5}}=666 \cdot 10^{-5}=0.8 \mathrm{~cm}
\end{array}\right\} \begin{aligned}
& \rightarrow L_{x}=l_{x}+\Delta l_{x}=0.5+666 \cdot 10^{-5} \mathrm{~cm} \\
& \rightarrow L_{y}=l_{y}+\Delta l_{y}=0.5+333 \cdot 10^{-5} \mathrm{~cm} \\
& \rightarrow L_{z}=l_{z}+\Delta l_{z}=3.8 \mathrm{~cm}
\end{aligned}
$$

