Answer on Question \#66050, Physics / Mechanics | Relativity

Question:

What should be the radius of a space station spinning with an angular speed of 2 rpm such that an astronaut inside the station experiences artificial gravity with $g=10 \mathrm{~m} / \mathrm{s}^{2}$?

Solution:

In this case artificial gravity occurs due to centrifugal force.
Therefore centrifugal acceleration $a_{c f}=\omega^{2} R=g$, where ω - angular velocity and R - the radius of the space station.
$\omega^{2} R=g \Rightarrow R=\frac{g}{\omega^{2}}$.
$\omega=2 \mathrm{rpm}=2 \cdot \frac{2 \pi}{60} \mathrm{~s}^{-1}=\frac{\pi}{15} \mathrm{~s}^{-1}$
$R=\frac{g}{\omega^{2}}=\frac{10}{\left(\frac{\pi}{15}\right)^{2}}=\frac{2250}{\pi^{2}} \cong 228 \mathrm{~m}$

Answer:

