Answer on Question \#66038-Physics-Mechanics-Relativity

A satellite going around Earth in an elliptic orbit has a speed of $10 \mathrm{~km} \mathrm{~s}-1$ at the perigee which is at a distance of 227 km from the surface of the earth. Calculate the apogee distance and its speed at that point.

Solution

Perigee distance is

$$
\begin{gathered}
r_{p}=h+R_{\text {Earth }}=227+6371=6598 \mathrm{~km} \\
v_{p}=\sqrt{G M\left(\frac{2}{r_{p}}-\frac{1}{a}\right)}
\end{gathered}
$$

The semi-major axis of orbit is

$$
a=\frac{G M r_{p}}{2 G M-r_{p} v_{p}^{2}}=18724 \mathrm{~km} .
$$

Apogee distance is

$$
r_{a}=2 a-r_{p}=30850 \mathrm{~km} .
$$

The apogee speed is

$$
v_{a}=\sqrt{G M\left(\frac{2}{r_{a}}-\frac{1}{a}\right)}=2.14 \frac{\mathrm{~km}}{\mathrm{~s}}
$$

