Answer on Question \#66035, Physics / Mechanics | Relativity

A sonometer wire having cross-sectional area $0.85^{\prime} 10^{-6} \mathrm{~m}^{2}$ is stretched between two rigid supports 1.2 m apart. A tension of 20 N is applied at its free end. If the temperature is reduced by $12^{\circ} \mathrm{C}$, calculate the final tension in the wire. Take coefficient of linear expansion (a) and isothermal Young's modulus (g) to be $1.5^{\prime} 10^{-5} \mathrm{~K}^{-1}$ and $2.0^{\prime} 10^{11} \mathrm{Nm}^{-2}$, respectively.

Solution:

When $\mathrm{dL}=0$, we using the next equation

$$
d F=-A \gamma \alpha d T
$$

Integrating this equation

$$
\int_{F_{1}}^{F_{2}} d F=-A \gamma \alpha \int_{T_{1}}^{T_{2}} d T
$$

We get

$$
F_{2}-F_{1}=A \gamma \alpha\left(T_{1}-T_{2}\right)
$$

Let $\mathrm{T}_{1}=20^{\circ} \mathrm{C}$

$$
\begin{gathered}
F_{2}-F_{1}=0.85 \cdot 10^{-6} \mathrm{~m}^{2} \times 1.5 \cdot 10^{-5} \mathrm{~K}^{-1} \times 2.0 \cdot 10^{11} \mathrm{Nm}^{-2} \times 8 \mathrm{~K} \\
F_{2}-F_{1}=20.4 \mathrm{~N}
\end{gathered}
$$

So that

$$
F_{2}=20.4 N+20 N=40.4 N
$$

Answer: 40.4 N

