Answer on Question \#66031, Physics / Other

Determine the distance that the third bright fringe would lie from the central bisector in a single slit diffraction pattern generated with 542 nm light incident on a $1.2 \times 10^{-4} \mathrm{~m}$ slit falling onto a screen 68 cm away.

Solution:

The general condition for a minimum for a single slit is:

$$
m \lambda=a \sin \theta
$$

where $m=1,2,3,4$ and so on

- a is the width of the slit,
- θ is the angle of incidence at which the minimum intensity occurs, and
- λ is the wavelength of the light

The distance of the bright fringe on screen from the central bisector is:

$$
y \approx \frac{m \lambda D}{a}
$$

Thus,

$$
y=\frac{3 \times\left(542 \times 10^{-9} \mathrm{~m}\right) \times(0.68 \mathrm{~m})}{1.2 \times 10^{-4} \mathrm{~m}}=0.009214 \mathrm{~m} \approx 9.2 \mathrm{~mm}
$$

Answer: 9.2 mm

Source: http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/sinslit.html

