Answer on Question \#66017-Physics-Mechanics-Relativity

An insect of mass 20 g crawls from the center to the outside edge of a rotating disc of mass 200 g and radius 20 cm . The disk was initially rotating at 22.0 rads -1 . What will be its final angular velocity? What is the change in the kinetic energy of the system?

Solution

From the conservation of momentum:

$$
\begin{gathered}
I_{1} \omega_{1}=I_{2} \omega_{2} \\
\omega_{2}=\frac{I_{1} \omega_{1}}{I_{2}}=\frac{\frac{1}{2} M r^{2}}{\frac{1}{2} M r^{2}+m r^{2}} \omega_{1}=\frac{M}{M+2 m}=\frac{200}{200+2(20)} 22=18.3 \frac{\mathrm{rad}}{\mathrm{~s}} .
\end{gathered}
$$

The change in kinetic energy:

$$
\Delta K=\frac{I_{2} \omega_{2}^{2}}{2}-\frac{I_{1} \omega_{1}^{2}}{2}=\frac{1}{2}\left(\left[0.02(0.2)^{2}+\frac{0.2}{2}(0.2)^{2}\right](18.3)^{2}-\frac{0.2}{2}(0.2)^{2}(22)^{2}\right)=-164 \mathrm{~J} .
$$

