Answer on Question \#66014, Physics / Mechanics | Relativity

Question:

A truck of mass 2000 kg moving on a highway experiences an average frictional force of 800 N . If its speed increases from $25 \mathrm{~ms}^{-1}$ to $35 \mathrm{~ms}^{-1}$ over a distance of 500 m , what is the force generated by the truck?

Solution:

Let m be the truck's mass, $F_{f r}$ - average frictional force, F_{t} - force generated by the truck, v_{1} - initial truck's speed, v_{2} - its final speed, D - distance, a - acceleration of the truck, and t - time spent for increasing the speed.
According to Newton's second law of motion $\vec{F}=\vec{F}_{t}+\vec{F}_{f r}=m \vec{a}$.
In scalar form we may write it like $F_{t}-F_{f r}=m a$, because frictional force is contradirectional to the force generated by truck. So, $F_{t}=F_{f r}+m a$.
Let's determine truck's acceleration.
For uniformly accelerated motion

$$
\begin{align*}
& v_{2}=v_{1}+a t \tag{1}\\
& D=v_{1} t+\frac{a t^{2}}{2} \tag{2}
\end{align*}
$$

From $1^{\text {st }}$ equation $t=\frac{v_{2}-v_{1}}{a}$ and then $=v_{1} \frac{v_{2}-v_{1}}{a}+\frac{a\left(\frac{v_{2}-v_{1}}{a}\right)^{2}}{2}=v_{1} \frac{v_{2}-v_{1}}{a}+\frac{\left(v_{2}-v_{1}\right)^{2}}{2 a}=\frac{v_{2}^{2}-v_{1}^{2}}{2 a}$.
Finally, $a=\frac{v_{2}^{2}-v_{1}^{2}}{2 D}$ and $F_{t}=F_{f r}+m \frac{v_{2}^{2}-v_{1}^{2}}{2 D}$.
$F_{t}=800+2000 \frac{35^{2}-25^{2}}{2 \cdot 500}=2000 N$

Answer:

