Question:

A truck of mass 2000 kg moving on a highway experiences an average frictional force of 800 N. If its speed increases from 25 ms⁻¹ to 35 ms⁻¹ over a distance of 500 m, what is the force generated by the truck?

Solution:

Let *m* be the truck's mass, F_{fr} — average frictional force, F_t — force generated by the truck, v_1 — initial truck's speed, v_2 — its final speed, *D* — distance, *a* — acceleration of the truck, and *t* — time spent for increasing the speed.

According to Newton's second law of motion $\vec{F} = \vec{F}_t + \vec{F}_{fr} = m\vec{a}$.

In scalar form we may write it like $F_t - F_{fr} = ma$, because frictional force is contradirectional to the force generated by truck. So, $F_t = F_{fr} + ma$.

Let's determine truck's acceleration.

For uniformly accelerated motion

$$v_2 = v_1 + at$$
 (1)
 $D = v_1 t + \frac{at^2}{2}$ (2)

From 1st equation $t = \frac{v_2 - v_1}{a}$ and then $= v_1 \frac{v_2 - v_1}{a} + \frac{a(\frac{v_2 - v_1}{a})^2}{2} = v_1 \frac{v_2 - v_1}{a} + \frac{(v_2 - v_1)^2}{2a} = \frac{v_2^2 - v_1^2}{2a}$. Finally, $a = \frac{v_2^2 - v_1^2}{2D}$ and $F_t = F_{fr} + m \frac{v_2^2 - v_1^2}{2D}$.

 $F_t = 800 + 2000 \frac{35^2 - 25^2}{2 \cdot 500} = 2000 \, N$

Answer:

2000 N

Answer provided by www.AssignmentExpert.com