Answer on Question 65995, Physics, Mechanics, Relativity

Question:

A box of mass 50 kg is placed on an inclined plane. When the angle of the plane is increased to 30°, the box begins to slide downwards. Calculate the coefficient of static friction between the plane and the box. Draw the free body diagram.

Solution:

There are three forces that act on the sliding box: the force of gravity mg directed downward and can be resolved into two perpendicular components ($F_{\|}=m g \sin \theta$ and $F_{\perp}=m g \cos \theta$), the force of reaction directed perpendicular to the surface and friction force $F_{f r}$ directed opposite to the motion of the box. Let's draw a free-body diagram and write all forces that act on the box:

$$
m \vec{g}+\vec{N}+\overrightarrow{F_{f r}}=m \vec{a}=0
$$

Then projected the forces on axis x and y we get:

$$
\begin{aligned}
& m g \sin \theta-F_{f r}=0,(1) \\
& N-m g \cos \theta=0 .(2)
\end{aligned}
$$

Let's find the static friction force that acts on the box:

$$
F_{f r}=\mu_{s} N=\mu_{s} m g \cos \theta .
$$

Substituting the friction force into the first equation we get:

$$
m g \sin \theta-\mu_{s} m g \cos \theta=0
$$

From this formula we can find the coefficient of static friction between the plane and the box:

$$
\begin{gathered}
m g \sin \theta=\mu_{s} m g \cos \theta \\
\mu_{s}=\frac{\sin \theta}{\cos \theta}=\tan \theta=\tan 30^{\circ}=0.58
\end{gathered}
$$

Answer:

$\mu_{s}=0.58$.

