Answer on Question \#65897-Physics-Mechanics-Relativity

Two collinear harmonic oscillations $x 1=8 \sin (100 \pi t)$ and $x 2=12 \sin (96 \pi t)$ are superposed. Calculate the values of time when the amplitude of the resultant oscillation will be (i) maximum and (ii) minimum

Solution

The amplitude of the resultant oscillation will be

$$
R=\sqrt{8^{2}+12^{2}+2(12)(5) \cos (100 \pi t-96 \pi t)}=\sqrt{208+120 \cos (4 \pi \mathrm{t})}
$$

(i) Maximum will be at

$$
\begin{gathered}
4 \pi t=2 \pi n \\
t=\frac{n}{2}, n=0,1,2, \ldots
\end{gathered}
$$

(i) Minimum will be at

$$
\begin{gathered}
4 \pi \mathrm{t}=\pi \pm 2 \pi n \\
t=\frac{1}{4} \pm \frac{n}{2}, n=0,1,2, \ldots
\end{gathered}
$$

Answer provided by https://www.AssignmentExpert.com

