Answer on Question 65768, Physics, Mechanics, Relativity

Question:

N'dea, an ACCESS student, has a mass of 87.5 kg . Her new bicycle has a mass of 14.6 kg . N'dea is pedaling so that a net (unbalanced) force of 7.87 N accelerates her and her bicycle. What is the value of the acceleration?

Solution:

By the definition of the Newton's Second Law of Motion we have:

$$
F_{n e t}=(M+m) a,
$$

here, M is the mass of N'dea, m is the mass of the bicycle, $F_{n e t}$ is the net force acting on the N'dea and her bicycle, a is the acceleration.

Then, from this formula we can find the value of the acceleration:

$$
a=\frac{F_{n e t}}{(M+m)}=\frac{7.87 \mathrm{~N}}{(87.5 \mathrm{~kg}+14.6 \mathrm{~kg})}=0.077 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} .
$$

Answer:

$a=0.077 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.
Answer provided by https://www.AssignmentExpert.com

