Answer on Question \#65764 - Physics - Mechanics | Relativity

Question:

An insect of mass 20 g crawls from the center to the outside edge of a rotating disc of mass 200 g and radius 20 cm . The disk was initially rotating at 22.0 rads -1 . What will be its final angular velocity? What is the change in the kinetic energy of the system?

Solution:

We need to find moments of inertia of the system with insect in center I_{i} and on the outside edge of a disk I_{f} :
$I_{i}=\frac{m_{\text {disc }} r^{2}}{2}=\frac{1}{2} \cdot 0.2 \cdot 0.04=0.004 \mathrm{~kg} \cdot \mathrm{~m}^{2} ;$
$I_{f}=\frac{m_{\text {disc }} r^{2}}{2}+m_{\text {insect }} r^{2}=\frac{1}{2} \cdot 0.2 \cdot 0.04+0.02 \cdot 0.04=0.0048 \mathrm{~kg} \cdot \mathrm{~m}^{2} ;$
Angular momentum remains, so, we can find final angular velocity:
$\omega_{i} I_{i}=\omega_{f} I_{f} \Rightarrow \omega_{f}=\frac{\omega_{i} I_{i}}{I_{f}}=\frac{22 \cdot 0.004}{0.0048}=\frac{55}{3} \approx 18.3 \frac{\mathrm{rad}}{\mathrm{s}}$;
The change in kinetic energy of the system is:
$\Delta W=\frac{I_{f} \omega_{f}^{2}}{2}-\frac{I_{i} \omega_{i}^{2}}{2}=-0.164 \mathrm{~J} ;$
Answer:
$\omega_{f}=18.3 \frac{\mathrm{rad}}{\mathrm{s}}, \Delta W=-0.164 \mathrm{~J}$.
Answer provided by https://www.AssignmentExpert.com

