

Answer on Question 65757, Physics, Mechanics, Relativity

Question:

A car increases its speed from 60 km/h to 65 km/h while a bicycle goes from rest to 3 m/s . Which undergoes greater acceleration after both travels in 10 seconds?

Solution:

Let's first convert km/h to m/s :

$$v_{i\ car} = 60 \frac{\text{km}}{\text{h}} \cdot \frac{1000 \text{ m}}{1 \text{ km}} \cdot \frac{1 \text{ h}}{3600 \text{ s}} = 16.6 \frac{\text{m}}{\text{s}},$$

$$v_{f\ car} = 65 \frac{\text{km}}{\text{h}} \cdot \frac{1000 \text{ m}}{1 \text{ km}} \cdot \frac{1 \text{ h}}{3600 \text{ s}} = 18 \frac{\text{m}}{\text{s}}.$$

We can find the acceleration of the object from the kinematic equation:

$$v_f = v_i + at,$$

here, v_i is the initial speed of the object, v_f is the final speed of the object, a is the acceleration of the object and t is the time.

Then, from this formula we can find the acceleration of the car and bicycle after both travels in 10 seconds:

$$a_{car} = \frac{v_{f\ car} - v_{i\ car}}{t} = \frac{18 \frac{\text{m}}{\text{s}} - 16.6 \frac{\text{m}}{\text{s}}}{10 \text{ s}} = 0.14 \frac{\text{m}}{\text{s}^2},$$

$$a_{bicycle} = \frac{v_{f\ bicycle} - v_{i\ bicycle}}{t} = \frac{3 \frac{\text{m}}{\text{s}} - 0 \frac{\text{m}}{\text{s}}}{10 \text{ s}} = 0.3 \frac{\text{m}}{\text{s}^2}.$$

As we can see, $a_{bicycle} > a_{car}$, so the bicycle undergoes greater acceleration after both travels in 10 seconds.

Answer:

The bicycle undergoes greater acceleration after both travels in 10 seconds.