

Answer Question #65737, Physics – Electric Circuits

We have a ton of $47\ \Omega$ resistors in the lab. I need a resistor that is closer to $70\ \Omega$. Come up with some way to wire multiple $47\ \Omega$ resistors (using series and parallel rules) to produce an equivalent resistance of $70\pm3\ \Omega$ (your equivalent resistance can be anything between 67 and $73\ \Omega$). You can use as many resistors as you would like.

Solution.

Consider the scheme of the resistances

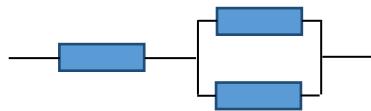
Find the total resistance of the circuit. According to the condition of the problem

$$R_1 = R_2 = R_3 = 47\Omega$$

Resistors R_1 and R_2 connected in parallel. Therefore their equivalent resistance R we find using the formula

$$\frac{1}{R} = \frac{1}{R_2} + \frac{1}{R_3} \rightarrow R = \frac{R_2 \cdot R_3}{R_2 + R_3} = \frac{47 \cdot 47}{47 + 47} = 23.5\Omega$$

The scheme of connection of resistors you can imagine as



These resistors are connected in series and therefore the equivalent resistance using the formula

$$R' = R_1 + R = 47 + 23.5 = 70.5\Omega$$

70.5Ω equivalent resistance between 67 and $73\ \Omega$

Answer. 70.5Ω

