Answer on Question 65641, Physics, Mechanics, Relativity

Question:

A stretched string of mass 20 g vibrates with a frequency of 30 Hz in its fundamental mode and the supports are 40 cm apart. The amplitude of vibrations at the antinode is 4 cm . Calculate the velocity of propagation of the wave in the string as well as the tension in it.

Solution:

a) We can find the velocity of propagation of the wave in the string from the wave speed formula:

$$
v=f \lambda,
$$

here, v is the velocity of propagation of the wave in the string, f is the frequency, λ is the wavelength.

If the length of the string is L, the fundamental mode is the one produced by the vibration whose nodes are the two ends of the string, so L is half of the wavelength of the fundamental mode. Then, the wavelength of the fundamental mode will be equal to $\lambda=2 L$ and we can calculate the velocity of propagation of the wave in the string:

$$
v=f \lambda=f 2 L=30 \mathrm{~Hz} \cdot 2 \cdot 0.4 \mathrm{~m}=24 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

b) We can find the tension in the string from the formula:

$$
v=\sqrt{\frac{T}{\mu}},
$$

here, v is the velocity of propagation of the wave in the string, T is the tension in the string, $\mu=M / L$ is the mass per unit length of the string.

Then, from this formula we can calculate the tension in the string:

$$
\begin{gathered}
v^{2}=\frac{T}{\mu^{\prime}} \\
T=v^{2} \mu=v^{2} \frac{M}{L}=\left(24 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \cdot \frac{0.02 \mathrm{~kg}}{0.4 \mathrm{~m}}=28.8 \mathrm{~N} .
\end{gathered}
$$

Answer:

a) $v=24 \frac{\mathrm{~m}}{\mathrm{~s}}$.
b) $T=28.8 \mathrm{~N}$.

Answer provided by https://www.AssignmentExpert.com

