Answer on Question #65640, Physics / Mechanics | Relativity

The linear density of a vibrating string is 1.3×10^{-4} kg m1. A transverse wave is propagating on the string and is described by the equation y (x, t) = 0.021 sin (30t - x) where x and y are in metres and t is in seconds. Calculate the tension in the string.

Find: T – ?

Given:

 ρ =1.3 × 10⁻⁴ kg×m⁻³

$$y(x, t) = 0.021 \sin (30t - x)$$

Solution:

Wave velocity:

 $v = \sqrt{\frac{T}{\rho}}$ (1), where T is tension, ρ is density Of (1) \Rightarrow $v^2 = \frac{T}{o}$ (2) Of (2) \Rightarrow T = v² × ρ (3) Wave velocity: $v = f \times \lambda$ (4) Linear frequency: $f = \frac{\omega}{2\pi}$ (5), where ω is cyclic frequency Wavelength: $\lambda = \frac{2\pi}{k}$ (6), where k is wave number (5) and (6) in (4): $v = \frac{\omega}{2\pi} \times \frac{2\pi}{k} = \frac{\omega}{k} (7)$ Equation of plane wave: $y(x, t) = A \sin(\omega t - x)(8)$ From the condition of the task: $y(x, t) = 0.021 \sin (30t - x) (9)$ Of (8) and (9) $\Rightarrow \omega = 30 \text{ s}^{-1}$, k=1 m⁻¹ (10) (10) in (7): $v=30 \text{ m}\times\text{s}^{-1}$ (11)

(11) in (3) T=0.117 N

Answer:

0.117 N