Answer on Question \#65639, Physics / Mechanics | Relativity

The linear density of a vibrating string is $1.3 \times 10^{-4} \mathrm{~kg} \mathrm{~m}^{-1}$. A transverse wave is propagating on the string and is described by the equation $y(x, t)=0.021 \sin (30 t x)$ where x and y are in metres and t is in seconds. Calculate the tension in the string.

Solution:

$$
\begin{gathered}
v=f \lambda=\frac{2 \pi \omega}{2 \pi k}=\frac{\omega}{k}=\frac{30}{1}=30 \mathrm{~m} / \mathrm{s} \\
v=\sqrt{\frac{T}{\mu}} \\
T=\mu v^{2} \\
T=1.3 \cdot 10^{-4} \times 30^{2}=0.117 \mathrm{~N}
\end{gathered}
$$

Answer: 0.117 N

Answer provided by https://www.AssignmentExpert.com

