Answer on Question \#65637- Physics Mechanics Relativity

The oscillations of two points $x 1$ and $x 2$ at $x=0$ and $x=1 m$ respectively are modelled as follows: $y 1$ $=0.3 \sin 4 \pi t$ and $y 2=0.3 \sin (4 \pi t+\pi / 8)$ Calculate the wavelength and speed of the associated wave.

Data:

$y_{1}=0.3 \sin (4 \pi t) ; x=0 m$
$y_{1}=0.3 \sin \left(4 \pi t+\frac{\pi}{8}\right) ; x=1 m$

Solution:

$$
\begin{array}{ll}
\Delta \varphi=\left(4 \pi t+\frac{\pi}{8}\right)-4 \pi t=\frac{\pi}{8} ; & \frac{\pi}{8}-1 m \\
& 2 \pi-\lambda m \\
& \\
\lambda=16 m ; & \\
w=2 \pi v=4 \pi ; \quad v=2 H z-\text { frequency } & \\
v=\lambda * v=32 \frac{\mathrm{~m}}{\mathrm{~s}} &
\end{array}
$$

Answer: $\lambda=16 \mathrm{~m} ; \boldsymbol{v}=\mathbf{3 2} \frac{\mathrm{m}}{\mathrm{s}}$

