Answer on Question \#65627-Physics-Electromagnetism

A thin rod extends along the z -axis from $\mathrm{z}=-\mathrm{d}$ to $\mathrm{z}=\mathrm{d}$. The rod carries a charge uniformly distributed along its length with linear charge density lamda. By integrating over this charge distribution, calculate the potential at a point P1 on the z -axis with coordinates $(0,0,2 \mathrm{~d})$.

Solution

$$
d V=k \frac{d q}{d+x}=k \frac{\lambda d x}{d+x}
$$

The potential at a point P1 on the z -axis with coordinates $(0,0,2 \mathrm{~d})$ is

$$
\begin{gathered}
V=\int_{0}^{2 d} d V=\int_{0}^{2 d} k \frac{\lambda d x}{d+x}=k \lambda \int_{0}^{2 d} \frac{d x}{d+x}=k \lambda \ln (d+x)_{0}^{2 d}=k \lambda[\ln (3 d)-\ln (d)]=k \lambda\left[\ln \left(\frac{3 d}{d}\right)\right] \\
=k \lambda \ln 3 .
\end{gathered}
$$

Answer: $\boldsymbol{k} \boldsymbol{\lambda} \ln 3$.

