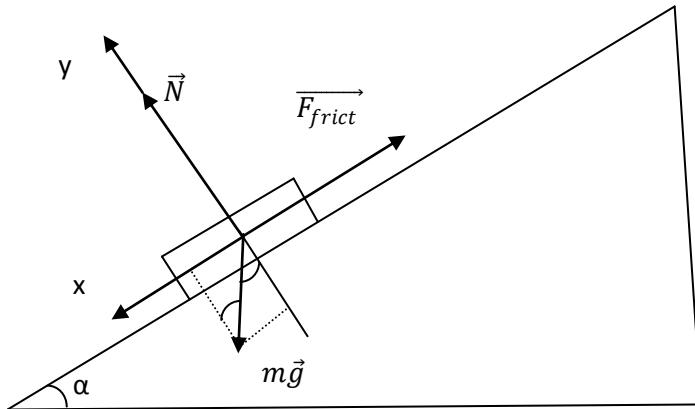


Answer on Question #65619, Physics / Mechanics | Relativity

A box of mass 50 kg is placed on an inclined plane. When the angle of the plane is increased to 30° , the box begins to slide downwards. Calculate the coefficient of static friction between the plane and the box. Draw the free body diagram


Find: $\mu - ?$

Given:

$$m=50 \text{ kg}$$

$$\alpha=30^\circ$$

Solution:

Newton's Second Law:

$$\sum_{i=1}^n \vec{F}_i = m\vec{a} \quad (1)$$

We believe that the body moves in straight lines and uniformly.

In this way, $\vec{a} = \vec{0}$ (2)

Write the vector sum of all forces:

$$\sum_{i=1}^n \vec{F}_i = \vec{F}_{frict} + \vec{N} + \vec{mg} \quad (3),$$

where \vec{F}_{frict} – friction force, \vec{N} – reaction force, \vec{mg} – gravity force

(2) and (3) in (1):

$$\vec{F}_{frict} + \vec{N} + \vec{mg} = \vec{0} \quad (4)$$

Find projections of forces.

$$OX: -F_{frict} + mg \sin \alpha = 0 \quad (5)$$

$$OY: N - mg \cos \alpha = 0 \quad (6)$$

Friction force:

$$F_{frict} = \mu N \quad (7),$$

where μ – coefficient of static friction ($\mu < 1$)

$$(7) \text{ in } (5): -\mu N + mg \sin \alpha = 0 \quad (8)$$

$$\text{Of (8)} \Rightarrow \mu N = mg \sin \alpha \quad (9)$$

$$\text{Of (6)} \Rightarrow N = mg \cos \alpha \quad (10)$$

$$\text{Of (9) and (10)} \Rightarrow \frac{\mu N}{N} = \frac{mg \sin \alpha}{mg \cos \alpha} \quad (11)$$

$$\text{Of (11)} \Rightarrow \mu = \tan \alpha \quad (12)$$

$$\text{Of (12)} \Rightarrow \mu = 0.58$$

Answer:

0.58