Answer on Question \#65608, Physics / Mechanics | Relativity

A bowling ball weighs 12.0 pounds and the length of a bowling lane is 60 feet, assume that you can treat the ball in the lane as a particle on a line. What is the quantum number that corresponds to the balls velocity of 7.55 miles per hour?

Solution:

$E=1 / 2 \mathrm{mv}^{2}$
$\mathrm{m}=12.0$ pounds $=5.4 \mathrm{~kg}$
$v=7.55$ miles $/$ hour $=3.38 \mathrm{~ms}^{-1}$
$\mathrm{a}=60$ feet $=18.3 \mathrm{~m}$
$E=1 / 2 \times 5.4 \mathrm{~kg} \times\left(3.38 \mathrm{~ms}^{-1}\right)^{2}=30.8 \mathrm{~J}$
$\mathrm{E}=\mathrm{n}^{2} \mathrm{~h}^{2} / 8 \mathrm{ma}^{2}$
$\mathrm{n}^{2}=8 \mathrm{Ema}^{2} / \mathrm{h}^{2}$
$n^{2}=8 \times 30.8 \mathrm{~J} \times 5.4 \mathrm{~kg} \times(18.3 \mathrm{~m})^{2} /\left(6.62 \times 10^{-34}\right)^{2}=1.02 \times 10^{72}$
$\mathrm{n}=10^{36}$
Answer: $\mathbf{1 0}^{\mathbf{3 6}}$
Answer provided by https://www.AssignmentExpert.com

