

Answer on Question #65602 – Physics - Mechanics - Relativity

Condition:

A proton undergoes a head on elastic collision with a particle of unknown mass which is initially at rest and rebounds with $16/25$ of its initial kinetic energy. Calculate the ratio of the unknown mass with respect to the mass of the proton.

Solution:

The law of conservation of energy:

$$E_p = E'_p + E_x$$

where E_p is energy of proton before the collision: $E_p = \frac{m_p V_p^2}{2}$,

E'_p - is energy of proton after the collision: $E'_p = \frac{m_p V'_p^2}{2}$,

E_x - is energy of particle after the collision

$$E'_p = \frac{16}{25} E_p \rightarrow \frac{m_p V'_p^2}{2} = \frac{16}{25} \frac{m_p V_p^2}{2} \rightarrow V'_p^2 = \frac{16}{25} V_p^2 \rightarrow V'_p = \frac{4}{5} V_p$$

$$E_x = E_p - E'_p = E_p - \frac{16}{25} E_p = \frac{9}{25} E_p \rightarrow \frac{m_x V_x^2}{2} = \frac{9}{25} \frac{m_p V_p^2}{2} \rightarrow m_x V_x^2 = \frac{9}{25} m_p V_p^2$$

The conservation of the total momentum demands that the total momentum before the collision is the same as the total momentum after the collision:

$$m_p V_p = m_p V'_p + m_x V_x \rightarrow m_x V_x = m_p (V_p - V'_p) = m_p \left(V_p - \frac{4}{5} V_p \right) = \frac{1}{5} m_p V_p$$

$$\begin{cases} (1) m_x V_x^2 = \frac{9}{25} m_p V_p^2 \\ (2) m_x V_x = \frac{1}{5} m_p V_p \end{cases} \rightarrow \frac{(1)}{(2)} := V_x = \frac{9}{5} V_p$$

$$\text{From (2): } \frac{m_x}{m_p} = \frac{V_p}{5V_x} = \frac{V_p}{5 \cdot \frac{9}{5} V_p} = \frac{1}{9}$$

$$\text{Answer: } \frac{m_x}{m_p} = \frac{1}{9}$$