Answer on Question \#65592-Mechanics - Relativity

A solid cylinder of mass $m=3.0 \mathrm{~kg}$ and radius $r=1.0 \mathrm{~m}$ is rotating about its axis with a speed of $\omega=40 \mathrm{rad} \mathrm{s}-1$. Calculate the torque which must be applied to bring it to rest in $t=10 \mathrm{~s}$. What would be the power required?

Solution

The second Newton's law for rotation

$$
J \frac{\Delta \omega}{\Delta t}=M
$$

Here $J=\frac{m r^{2}}{2}=\frac{3 \times 1^{2}}{2}=1.5 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ is the moment of inertia, $\Delta \omega=\omega-\omega_{0}=0-40=-40 \frac{\mathrm{rad}}{\mathrm{s}}$.
So the torque

$$
M=J \frac{\Delta \omega}{\Delta t}=1.5 \frac{-40}{10}=-6 \mathrm{~N} \cdot \mathrm{~m} .
$$

The work done is equal the change in kinetic energy

$$
\mathrm{W}=\Delta \mathrm{E}=\frac{J \omega^{2}}{2}-\frac{J \omega_{0}^{2}}{2}=0-\frac{1.5 \times 40^{2}}{2}=-1200 \mathrm{~J} .
$$

The power required

$$
\mathrm{P}=\frac{W}{t}=\frac{1200}{10}=120 \mathrm{~W} .
$$

Answer $M=6 \mathrm{~N} \cdot \mathrm{~m}, \mathrm{P}=120 \mathrm{~W}$.

