Answer on Question \#65532 - Physics - Mechanics | Relativity

Question:

A proton undergoes a head on elastic collision with a particle of unknown mass which is initially at rest and rebounds with $16 / 25$ of its initial kinetic energy. Calculate the ratio of the unknown mass with respect to the mass of the proton.

Solution:

Let $v_{p i}$ is the initial speed of proton, $v_{p f}$ is the final speed of proton, v is the speed of particle after collision, m_{p} is the mass of proto and m is the mass of particle.

From the conditions imposed on the energy of the proton we can find its final velocity:
$E_{p f}=\frac{16}{25} E_{p i} \Rightarrow \frac{m_{p} v_{p f}^{2}}{2}=\frac{16}{25} \frac{m_{p} v_{p i}^{2}}{2} \Rightarrow v_{p f}^{2}=\frac{16}{25} v_{p i}^{2} \Rightarrow v_{p f}=\frac{4}{5} v_{p i} ;$

The momentum of the system is saved so we can find an unknown particle velocity after collision:
$m_{p} v_{p i}=-m_{p} v_{p f}+m v \Rightarrow m_{p} v_{p i}=-\frac{4}{5} m_{p} v_{p i}+m v \Rightarrow \frac{9}{5} m_{p} v_{p i}=m v \Rightarrow v=\frac{9}{5} \frac{m_{p}}{m} v_{p i} ;$

The energy of the system is also saved and we can express a mass of particle through the mass of the proton:
$\frac{m_{p} v_{p i}^{2}}{2}=\frac{m_{p} v_{p f}^{2}}{2}+\frac{m v^{2}}{2} \Rightarrow m_{p} v_{p i}^{2}=\frac{16}{25} m_{p} v_{p i}^{2}+m v^{2} \Rightarrow \frac{9}{25} m_{p} v_{p i}^{2}=m v^{2} \Rightarrow \frac{9}{25} m_{p} v_{p i}^{2}=$ $=m\left(\frac{9}{5} \frac{m_{p}}{m} v_{p i}\right)^{2} \Rightarrow \frac{9}{25} m_{p} v_{p i}^{2}=\frac{81}{25} \frac{m_{p}^{2}}{m} v_{p i}^{2} \Rightarrow \frac{9 m_{p}}{m}=1 \Rightarrow m=9 m_{p} ;$

Answer:
$\frac{m}{m_{p}}=9$.

