

### Answer on Question #65486-Physics-Other

A commuter train travels between two downtown stations. Because the stations are only 1.24 km apart, the train never reaches its maximum possible cruising speed. During rush hour the engineer minimizes the travel interval  $\Delta t$  between the two stations by accelerating for a time interval  $\Delta t_1$  at  $a_1 = 0.100 \text{ m/s}^2$  and then immediately braking with acceleration  $a_2 = -0.470 \text{ m/s}^2$  for a time interval  $\Delta t_2$ . Find the time intervals  $\Delta t_1$  and  $\Delta t_2$ .

#### Solution

The maximum velocity

$$V = a_1 \Delta t_1$$

The final velocity is zero:

$$0 = V + a_2 \Delta t_2$$

$$\frac{\Delta t_2}{\Delta t_1} = -\frac{a_1}{a_2} = -\frac{0.1}{-0.470}$$

$$\frac{\Delta t_1}{\Delta t_2} = 4.7$$

The distance is

$$1240 = \frac{a_1 \Delta t_1^2}{2} + V \Delta t_2 + \frac{a_2 \Delta t_2^2}{2}$$

Using  $0 = V + a_2 \Delta t_2$

$$1240 = \frac{a_1 \Delta t_1^2}{2} - \frac{a_2 \Delta t_2^2}{2} = -\frac{a_2 \Delta t_2}{2} (\Delta t_1 + \Delta t_2) = -\frac{a_2 \Delta t_2}{2} (5.7 \Delta t_2)$$

$$\Delta t_2 = \sqrt{\frac{2(1240)}{5.7(0.47)}} = 14.3 \text{ s.}$$

$$\Delta t_1 = 4.7(14.3) = 67.2 \text{ s.}$$

Answer provided by <https://www.AssignmentExpert.com>