Answer on Question\#65463, Physics / Astronomy | Astrophysics

693.7 N ; enough

Question

Two ping-pong balls, each with a positive charge of $2.5 \times 10^{-5} \mathrm{C}$, are located 9.0 cm apart. Determine the size of the electric force between them. Would this be enough force to support a 70 kg person against the downward force of gravity?

Solution

According to the Coulomb's law, electric force:

$$
F_{C}=k \frac{q_{1} q_{2}}{r^{2}}
$$

$k \approx 8.99 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}-$ Coulomb's constant, $q_{1}=q_{2}=2.5 \times 10^{-5} \mathrm{C}, r=9.0 \mathrm{~cm}=0.09 \mathrm{~m}$ Then,

$$
F_{C}=8.99 \times 10^{9} \frac{\left(2.5 \times 10^{-5}\right)^{2}}{0.09^{2}}=\frac{8.99 \cdot 2.5^{2}}{9.0^{2}} \times \frac{10^{9} \cdot 10^{-10}}{10^{-4}}=\frac{8.99 \cdot 6.25}{81.0} \times 10^{3} \approx 693.7 \mathrm{~N}
$$

Force of gravity can be expressed as:

$$
F_{g}=m g
$$

m - mass, g - acceleration of the free fall.
If we consider person standing somewhere on Earth, then $g \approx 9.81 \mathrm{~m} \mathrm{~s}^{-2}$
Hence,

$$
F_{g}=70 \cdot 9.81=686.7 \mathrm{~N}
$$

$F_{C}>F_{g}$, thus, such size of the electric force is sufficient to support a 70 kg person against the downward force of gravity (on Earth).

Answer provided by https://www.AssignmentExpert.com

