


Answer on Question 65453, Physics, Mechanics, Relativity

Question:

A bullet of mass 20 g , travelling at a speed of 350 ms^{-1} , strikes a steel plate at an angle of 30° with the plane of the plate. It ricochets off at the same angle, at a speed of 320 ms^{-1} . What is the magnitude of the impulse that the steel plate gives to the projectile? If the collision with the plate takes place over a time $\Delta t = 10^{-3}\text{ s}$, what is the average force exerted by the plate on the bullet?

Solution:

a)

Let's first find x - and y -components of the impulse that the steel plate gives to the projectile (we take the positive x - and y -directions as in the picture above):

$$\begin{aligned} J_x = \Delta p_x &= mv_{fx} - mv_{ix} = m(-v_{fx} \sin \alpha - v_{ix} \sin \alpha) = \\ &= 0.02\text{ kg} \cdot (-320\text{ ms}^{-1} \cdot \sin 30^\circ - 350\text{ ms}^{-1} \cdot \sin 30^\circ) = -6.7\text{ N} \cdot \text{s}, \end{aligned}$$

$$\begin{aligned} J_y = \Delta p_y &= mv_{fy} - mv_{iy} = m(v_{fy} \cos \alpha - v_{iy} \cos \alpha) = \\ &= 0.02\text{ kg} \cdot (320\text{ ms}^{-1} \cdot \cos 30^\circ - 350\text{ ms}^{-1} \cdot \cos 30^\circ) = -0.52\text{ N} \cdot \text{s}. \end{aligned}$$

We can find the magnitude of the impulse that the steel plate gives to the projectile from the Pythagorean theorem:

$$J = \sqrt{J_x^2 + J_y^2} = \sqrt{(-6.7\text{ N} \cdot \text{s})^2 + (-0.52\text{ N} \cdot \text{s})^2} = 6.7\text{ N} \cdot \text{s}.$$

b) We can find the average force exerted by the plate on the bullet from the definition of the impulse:

$$J = \bar{F} \Delta t,$$

$$\bar{F} = \frac{J}{\Delta t} = \frac{6.7 \text{ N} \cdot \text{s}}{10^{-3} \text{ s}} = 6700 \text{ N.}$$

Answer:

- a) $J = 6.7 \text{ N} \cdot \text{s.}$
- b) $\bar{F} = 6700 \text{ N.}$

Answer provided by <https://www.AssignmentExpert.com>