

Answer on Question #65379, Physics / Optics

Why central rings in the Newton's ring always be dark.

Solution:

Optical path difference of waves 1 and 2:

$$OPD = nd + \frac{\lambda}{2} (1),$$

where n is refractive index of layer (air), d is physical length, λ is wavelength.

Light passes from medium with less optical density (air) to the medium with more optical density (glass). In this way, OPD increases by $\frac{\lambda}{2}$.

For central ring: $d=0$ m (2).

$$(2) \text{ in (1): } OPD = \frac{\lambda}{2} (3)$$

The condition of minimum interference (dark rings):

$$OPD = (2k + 1) \frac{\lambda}{2} (4),$$

where $k = 0, \pm 1, \pm 2, \dots$

$$\text{Of (4) } \Rightarrow \text{ if } k=0, \text{ then } OPD = \frac{\lambda}{2} (5)$$

Of (3) and (5) \Rightarrow central rings in the Newton's rings always be dark.