Answer on Question 65307, Physics, Electric Circuits

Question:

Two capacitors have an equivalent capacitance of $16.0 p F$ when they are hooked up in parallel. The same two capacitors when hooked up in series have an equivalent capacitance of $1.75 p F$. What is the capacitance of each capacitor?

Solution:

Let the capacitance of the first capacitor be C_{1} and the second one $-C_{2}$. Then, we can write the equivalent capacitance of two capacitors connected in series or in parallel:

$$
\begin{align*}
& \frac{1}{C_{s}}=\frac{1}{C_{1}}+\frac{1}{C_{2}},(1) \\
& C_{p}=C_{1}+C_{2},(2) \tag{2}
\end{align*}
$$

here, $C_{s}=1.75 p F$ is the equivalent capacitance of two capacitors connected in series, $C_{p}=16.0 p F$ is the equivalent capacitance of two capacitors connected in parallel.

Let's express C_{2} from the equation (2) and substitute it into the equation (1):

$$
\begin{gathered}
C_{2}=C_{p}-C_{1} \\
\frac{1}{C_{s}}=\frac{1}{C_{1}}+\frac{1}{C_{p}-C_{1}} \\
\frac{1}{C_{s}}=\frac{C_{p}}{C_{1}\left(C_{p}-C_{1}\right)} .
\end{gathered}
$$

After simplification we get the quadratic equation:

$$
C_{1}^{2}-C_{1} C_{p}+C_{p} C_{s}=0
$$

Let's substitute C_{s} and C_{p} into the equation:

$$
C_{1}^{2}-16 C_{1}+28=0 .
$$

This quadratic equation has two roots:

$$
\begin{aligned}
& C_{1}=\frac{16+\sqrt{(16)^{2}-4 \cdot 28}}{2}=14, \\
& C_{1}=\frac{16-\sqrt{(16)^{2}-4 \cdot 28}}{2}=2 .
\end{aligned}
$$

Both roots of the quadratic equation have the sense. If we have $C_{1}=14 p F$, then we should take $C_{2}=2 p F$ to obtain $C_{s}=1.75 p F$ and $C_{p}=16.0 p F$. Similarly, if we have $C_{1}=2 p F$, then we should take $C_{2}=14 p F$ and we obtain the same C_{s} and C_{p}. Therefore, the capacitance of each capacitor is $14 p F$ and $2 p F$.

Answer:

The capacitance of each capacitor is $14 p F$ and $2 p F$.

